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A Modified Boltzmann Equation for Bose—Einstein
Particles: Isotropic Solutions and Long-Time Behavior
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Under some strong cutoff conditions on collision kernels, global existence, local
stability, entropy identity, conservation of energy, and moment production
estimates are proven for isotropic solutions of a modified (quantum effect)
Boltzmann equation for spatially homogeneous gases of Bose—Einstein particles
(BBE). Then applying these results with the biting-weak convergence, some
results on the long-time behavior of the conservative isotropic solutions of the
BBE equation are obtained, including the velocity concentration at very low
temperatures and the tendency toward equilibrium states at very high tem-
peratures.

KEY WORDS: Modified Boltzmann equation; Bose—Einstein particles; quan-
tum effect; entropy identity; temperature condition; velocity concentration; equi-
librium; biting-weak convergence.

1. INTRODUCTION

We study time-evolution of spatially homogeneous gases of Bose—Einstein
identical particles governed by the following modified Boltzmann equation
which takes a quantum effect into account:

%f(u, t) :mesz Bv—v,, o)

XL (L +ef )1 +ef ) — ff(L+ef")(1 +ef )] do dv,
(BBE)
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where B(z, w) is the collision kernel which is a nonnegative Borel function
of |z|, |{z, w)| only:

B(z, w)EE<|Z|,|<Z|’Z‘|">|>, (z, ) eR*x §2
The solutions f are velocity distribution functions (i.e., the density functions
of particle number), ¢ = (h/m)3/g, h is the Planck’s constant, m and g are
the mass and the “statistical weight” of a particle.

From Chapman and Cowling (ref. 7, Chap. 17) we know that Eq.
(BBE) is established on the basis of the following argument: When the
mean distance between neighbouring molecules is comparable with the size
of the quantum wave fields with which molecules are surrounded, a state
of congestion results. For a gas composed of Bose—Einstein identical par-
ticles, according to quantum theory, the presence of a like particle in the
velocity-range dv increases the probability that a particle will enter that
range; the presence of f(v) dv particles per unit volume increases this prob-
ability in the ratio 1+ ¢f(v). This yields the Eq. (BBE).

Symmetrically, replacing the “increases” and the ratio “1 +¢f™ with
“decreases” and “l1 —e¢f(v)” leads to the following modified Boltzmann
equation for Fermi-Dirac identical particles (due to the Pauli exclusion
principle):

a% (v, 1) :Umxy B(v—v,,w)

XL (D= )1 —ef ) — [ (1 —&f")(1 —&f") ] doo dv,,
(BFD)

Of course, if the quantum effect is not taken into account, i.e., if ¢ =0,
we go back to the original Boltzmann equation

0

S /wn=[] | Bo—vL o)1) do de, (B)

In statistical physics and experiments, it is well-known that the evolu-
tion of the Bose—FEinstein particles at very low temperatures exhibits the
Bose—FEinstein condensation (i.e., the velocity concentration) which is essen-
tially different from those of the Fermi-Dirac particles. From a mathematical
viewpoint, this phenomenon of velocity concentration can be also explained
as the lack of L'-weak compactness of the function set { f(-, )} ,~,, Where
fis a solution of Eq. (BBE). The main purpose of the present paper is to
show this.
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Let us first recall that for Eq. (B) and Eq. (BFD) there are no problem
of such weak compactness: In the case of Eq. (B), under the initial condi-
tion f|,_o= /o, & fo(v)(1+ |v]*+ [log fo(v)]) dv<co, the Boltzmann’s
H-theorem and the conservation of mass and energy imply that sz f(v, 1)
(1+|v]®>+ |log f(v, t)|) dv is bounded in time on [0, co). This gives the
weak compactness of {f(-,7)},5, in L'(R?), and the solutions f(-, ), as
t — o0, always converge (at least weakly) in L'(R?) to the equilibrium solu-
tions which have the unique form f,,(v) =a e 2" ~%F (see e.g., refs. 1, 5, 6,
10, and 17). In the case of Eq. (BFD), because of the physical meaning of
the factor 1—¢f, one expects that the solutions satisfy 1 —¢f>0, ie.,
0< f(v, 1)< 1/e on R*x [0, o0), at least if the initial data f|,_, = f, satisfy
the same constraints. In other words, L*-bounds are available. This
together with the conservation of mass and energy gives the L!- weak com-
pactness of { f(-,7)},=0, and the weak limits of f(-, 7,) (¢, > o0) are equi-
librium solutions which may have one of the following two forms (at least):

_ _ 2
ae~b1v—wl |

Treae e 204 G lieeien

General study of (spatially inhomogeneous) solutions of Eq. (BFD) can be
found in Dolbeault® and P. L. Lions."?

For Eq. (BBE), the case is completely opposite. On one hand, the
factor 1 + &f strengthens the non-linearity in the collision integral for large
value of the solution f. On the other hand, under the only condition that
the mass and energy are finite, the corresponding entropy

1
Sf(l‘)ZIR3 |:6(1+{;f) 10g(1+{,‘f)_f logf dv

is also finite, and satisfies (at least formally) the entropy identity:
t
_ 1 _
Sf([) h Sf(o) ta Jo de ijmxmxsz Blv Vs )

X T (L +ef V(1 +ef,), (1 +ef )1 +ef",) do dv,, dv, 1>0
(1.1)

where

(a—Db) log(a/b), a>0, b>0;
I'(a,b)=< + o0, a>0, b=0 or a=0, b>0; (1.2)
0, a=b=0
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Thus, except the conservation of the mass and energy, there are no infor-
mation can be directly obtained from either the structure of Eq. (BBE) or
the entropy identity (1.1) in proving the weak compactness of { (-, 1)} ,5,.
Next let us observe the temperature affect on the long-time behavior of
solutions of Eq. (BBE). After a velocity-translation, in this paper we always
assume v,=0, ie., sz So(v) vdv=0, for instance, the initial data f, are
isotropic functions: fy(v)= f0(|v|) Then the equilibrium solutions of Eq.
(BBE) have the unique form:

—b|v|2
Qa,b(v):%, 0<a<lle, b>0

for which we have the following

Proposition 1. Let M,, M, be positive real numbers. Then the
following moment equation system

[ Qusvydo=My, | 0, 0) o> dv< M, (13)
R3 R3

has a solution (a, b) satisfying 0 <a<1/e, b>0, if and only if M,, M,
satisfy

M, _3 52
(M)~ 22 [L3/)T

23 (1.4)

where {(s)=X2_,n"° s>1. Moreover, under the condition (1.4), the
moment equation system

f Q, ,(v) dv=M,, j Q, ,(v) |v]? dv= M, (1.5)
R3

has a unique solution (a, b) satisfying 0 <a<1/e, b>0.

The proof of Proposition 1 will be given in Section 5. Except in this
proposition, in the following we always take M, =§R3 fo(v) dv and
M,= fks fo(v) |v]? dv. Note that since in this case M, is the particle num-
ber per unit space volume and 3(M,/M,) is the kinetic energy per unit
mass, the condition (1.4) is equlvalent to the temperature condition:

(52
T>T,:= MT ~0.5134T,

€(3/2)
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where

2

T: - —_—
3k,

N.\§
==

is the temperature (see Truesdell and Muncaster,""” pp. 43-44), k is the
Boltzmann’s constant and (because ¢ = (h/m)>/g)

h2 M, 2/3
<" Dmmk [co/z) g}

is the critical temperature derived from the classical method in statistical
physics for the Bose—Einstein condensation of ideal Bose gases (see Landau
and Lifshitz, ") pp. 180-181, p. 36; or Parthia'® p. 180 for g =1 (spinless)).
Therefore, if 7' satisfies the very low temperature condition: T'< T,, the
entropy identity (1.1) implies that the set { (-, 7)},>, can not be weakly
compact in L'(R?), or equivalently, a velocity concentration happens when
time tends to infinity. However for not very low temperature conditions, it
is not known whether the set {f(-,7)},-, is always weakly compact in
LY(R3). But for some very high temperature conditions: T/T, >> 1, the set
{f(-, 1)} ,50 can be weakly compact and the solution f(-, 7) tends to the
unique equilibrium solution €,, as ¢— co. These results, including
existence of solutions, will be rigorously proven in this paper for isotropic
solutions of Eq. (BBE) of non-soft potential models under the following
strong cutoff conditions:

B(z, w) < K(cos 0)?sin 0 |z|>, (z, ) eR*>x §? (1.6)
A* = B 1.
2831133 T+ LZ (z, ®) dw < 0 (1.7)

and their special case:

B(z, w)=min{K(cos 0)*sin 0 |z|?, b(0)|z| #}, (z,w)eR*xS?%, 0<p<1
(1.8)

/2
A:=4nf b(0) sin 0 df < o (1.9)
0

where K 1is a positive constant, and, in (1.6) and (1.8), O=
arc cos(|z| 7' |[{z, w>|) (for |z] =0 we define 0=0), and the angular func-
tion b(#) is continuous and strictly positive in the open interval (0, 7/2).
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Note that although the high nonlinearity of Eq. (BBE) can be reduced
through the following identity

ST +ef ) +efy) = fF (1 +ef )T +ef%)
=L +ef +ef ) =S (1 +ef +ef) (1.10)

the “Bose parts” i.e., the collision integrals

Lo o B0 VLS S S e IS IS} der oy (L1D)

are still difficult to deal with because in general the set { f(-, 7)},>, is not
L'-weakly compact.

In Section 2 we prove that the cutoff condition (1.6) insures the
L'-boundness of the “Bose parts” for isotropic functions in L'(R?). In
Sections 3 and 4 we use this L!-boundness to prove the global existence of
isotropic solutions, entropy identity (1.1), and a moment production
estimates of Wennberg’s type (ref. 18) which implies the uniqueness of con-
servative solutions of Eq. (BBE). Here and below the conservative solution
means the solution that conserves the mass, momentum, and energy, i.c.,
§R3 Sf(v, ){1, v, |v|*} dv are constants in 7€ [0, c0). In Sections 5 and 6 we
study the long-time behavior of isotropic solutions of Eq. (BBE), where the
velocity concentration at the very low temperature 7 < T, are proven, and,
thanks to the moment estimates, some very high temperature conditions
for weakly converging to equilibrium states are also given.

Throughout this paper, whenever saying that a function set is weakly
compact in L', it always means that it is weakly sequentially compact in
L' (Dunford and Schwartz®). Isotropic (or radial) functions in v used in
this paper are often denoted as

S)=f(l),  flo,1)= f(lv], 1), etc.

Notations f, f,., /' and f’, appeared in collision integrals are the same as
usual, i.e.,

f':f‘(vo')n f*:f‘(v*o')a f!:f‘(vr’.)’ f'*:f(ur*’)
where v, v, and v, v}, are velocities of two particles before and after their

collision respectively, and they have the following relations which have
been frequently used in the change of integral variables:
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V=v—Cv—0,,0) ®, V=0, +<v—0,,0) o, weS?
v+, =v+v,AAB, [0'[% + [V = 0] + v, | %
[V =t 0) | =Ko—v,, 0>, [V —vl=lv—0,l

2. SOME PROPERTIES OF COLLISION INTEGRALS

In this section, under the cutoff conditions (1.6) and (1.7), we prove
the L!-boundness and the weak convergence of the “Bose parts” (1.11). Let

R*(z):={xeR’|xLlz}, S'z):={weS*|lwlz}, zeR\{0}
It is obvious that
R¥(+/2)=R%z), S (+42)=S'(z), ¥A>0, VzeR\{0}  (2.1)

Let d*w, d+x denote the Lebesgue measures on the circle S'(z) and on the
plan R?(z) respectively, i.e., (for instance) for ¢ € C(S?), 0 <y e C(R*\{0})

27
jl go(w)d%o::f o(cos(0)i+sin(0)j)do, i, jeS'(z), iL],
S'(z) 0

o0

J x//(x)dlx=J rj V(rw) d*w dr, zeR*\{0}
R%(z) sl(z)

0

Lamma 1. Let F(x, y) >0 be continuous on (R*\{0})x (R*\{0}),
a(r, p) =0 be measurable on (0, 00) x (0, c0). Then

dx [ F(x, p)allxl, 1y]) d*y
R3 R%(x)

K
=[ | R pyadad, 1y dtx
r Ry |V

Proof. This is a consequence of the following equality (Lu®®)

f “ G(a,a))dlw}dazj “ Glo, w)d*o | do, YGeC(S*xS?)
S2 | /sl(o) S22 | “Si(w) (2.2)
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Using (2.1), (2.2) and Fubini-Tonelli’s theorem we have

[av| e yyatl i a
r IRy [

:pr f < wrj fFrcu pa) alr, p)dia)dr>dadp
0 s2 \“o Sle) P

= LOO Loo pr? {Lz <Ll(a) F(ro, po) diw> do’} a(r, p) dr dp

:Joo foo pr? {f <[ F(rw, po) dla> dw} a(r, p) drdp
0 Y0 s2 sl(w)
= dxj F(x, y)a(|x], |y d*y 1

R} TRXx)

The following lemma is the Carleman’s representation.®

Lemma 2. Let F be a nonnegative measurable function on R* x R?
such that for any fixed v and v, eR? F(v,-) and F(-, v,) are measurable
on R3. Then for all veR3

H B(v—v,,w) F(v',v,)dodv,
R3x 82

IS T x| )
_2L3 |x|2“R2(x)B<| y|| y|>F(U x,o—y)dty | dx (2.3)

Lemma 3. If x, y,veR?® and xLly, then |x||y|<|x||v—yp|+
|yl v —x].

Proof. Let i=x/|x|, j=y/|y|, A=1/|x| w=1/|y|. Then, since il j,
we have

[(x] o=yl + 1yl lo=xD/(Ix] [y)]1? = (1Av—i] + |uv = j])?
> |20 =il + o — jI?
>1+(1=ol [2i+uj)?=1 1

The following proposition implies the L'-boundness of the “Bose
parts” (1.11).
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Proposition 2. Suppose the kernel B(z, w) satisfies (1.6). Then
there is a measurable function B on R? x R? x R? defined through B, having
the following three properties:

(1) 0<B(v,x, y)<2K, (v,x, y)eR*xR>xR>,
2) For any sequence of kernels B,(z, w) satisfying 0 < B,(z, w) <
B(z, w) and lim B,(z,w) = B(z, w) for all (z, w)eR3>xS?,

n— oo

lim By(v,x, »)=B(v,x,¥), (v, x, y)eR*xR*xR?

n— oo

(3) Forany &(-|, |-|)e L'(R* xR?),
[ Bo—v,, 0 (0], 1v,]) do dv,
R3xS?

:JIR3 - E(U, X, y) QD(|X|, |y|) 1{|x|2+|y|2>|,,|2} dx dy, ae veR?
X (2.4)

In particular, for any isotropic functions f, g and / which are all in L'(R?),
and for any ¢ e L*(R?),

([ Bo—vy0) f0) g(v) hwy) dlel, [0, |0,]) deo do do
R’ xR’ xS

=11 Bieex. ) () g(x) W) (1ol 31, [31)
R°xR°xR
X Lgp gy oy dy dx dv

Proof. We may assume that @ is nonnegative since this implies
general case of (2.4). Further, we may assume that @ is also continuous. In
fact, if (2.4) holds for nonnegative continuous functions, then for a general
nonnegative function @(|-|, |-])e L' (R®*xR?), choose nonnegative con-
tinuous functions @,(|-|, |-|)e LY(R®*xR?) such that &, converge in
LY(R3>xR3) to @. By Fatou’s Lemma, we see that @ satisfies the inequality
for (2.4), ie., the left hand side of (2.4) < the right hand side of (2.4).
Thus, the nonnegative functions |@ — @,,| also satisfy the same inequality
and therefore (2.4) follows from L'-convergence.

For veR? and x, ye R*\{0} with x L y, define

_ x|
B<|X—y|, |X—y|
B*(v,x, y)=
PR o=yl + 1] lo—x1)
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and B*(v, x, y) =0, otherwise. Since, by assumption on B (choose
z=x—y, o=x/|x]),

) N NI
B<|x—y|, <K = yp?
|x — yl [x—yl/ |x—yl
— K Ix2 1]

for all x, y e R*\{0} with x L y, it follows from Lemma 3 that
B*(v, x, y) <K, (v, x, y)eR*xR?*xR? (2.5)

Let .#(®)(v) be the left hand side of (2.4). Then using Carleman’s represen-

tation (2.3), Lemma 1 and |x— y| =./|x|?>+ |y|? for x L y, we have
P(lv—x|, [v=y]) 5 |x]|
f(qs)(v)=2j dxj . Bl |x—yl, dty
R URYx) |x] lx—
(lp— _
_5 dxj (lo—=x[, [o—y])
RS URYx) |x]

X (x| |0 =yl + |y] o —x]) B*(, x, y) dy
=2 dx | @(lo—xllv—yl) lv— | B (v, x, y)d*y
R3 R%(x)

£2[ x| (ol fo—yl) lo -2l 2 B0 x, ) dty
R} R(x) |x]

=2 ax|  @(lo—xllv—yl) lv— | B*(v,x, y)d*y
R3 R%(x)

+2[ dy [ @(o—xl, o= yl) o= x| B*(v,x, y) d*x
R3

R(y)

= A(P)(v) + A(P)(v)

Now let v, = <v, x/|x|>(x/|x|), §,=v—v,. Then &, R*x). Using the
translation y — y + &, in R%*(x) we have, for the inner integral in .#,(®)(v),
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[ @(v—xl, o= y]) lo— | B*(, x, y) dy
R%(x)

= ¢(|U—X|,|Ux—y|)|lix—y| B#(Uixsy—i_ﬁx)dLy

R2(x)

=], pP(o—xl. /p?+ 10 P) P+ e
x{f B#(v,x,pco+ﬁx)dlw} dp
Sl(x)

:foo r2®(|v— x|, r){f B*(v,x, /1 —|v,|?w+7,) dJ‘co} dr
sl(x)

v

1
e IRCLIUEE N PP R PRI

<[ B DB o+ i) dbo | dy

sl(x)

If we define

. 1 N

Bl(v9 X, Y): 1{|)’|>|vx|}1{X7é0} Z jSl( ) B#(U, X,/ |J/|2_ |Ux|260+17x)dl60

then

%(@)(0) :JJ ¢(|U—X|, |J’|) él(ua X, J’) l{|v—x|2+|y|2>|v|2} dx dy

R3xR3

where the factor 1y,_, 324,252 comes from the fact that |y[>|v,|
implies |v — x|?+|y|?> > |v|% Similarly we have

A@) =[] Bl 0= y1) Bale 5 ) g oo oy d dy
with

R 1 -
By(v,x, y)= 1{|x|>|vy|} 1{y;é0} P Jsl(y) B*(v, V4 x| — |vy|2a)+vy, y)dto
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Therefore (2.4) follows by taking
B(U, X, J’)=Bl(Ua v—X, y)+B2(U, X, U_y)

which is bounded by 2K (using (2.5)) and possesses the second property. ||

Let {f,} 2, be weakly compact in L'(R¥), and let {g,} >, = L®(R¥)
satisy sup, s Hg,,HLoc(Rk)<oo and lim, _, g,(x)=0 for ae. xeRk. It is
easily shown that lim,_, [ f,g,lr=0. By induction, this property
implies the following:

Lemma 4. Letd=d,+dy+ - +dy, /" f,e L'R%) (j=1,2,.., N),
Y WEL®(RY) (n=1,2,.) satisfy f7—f;, (n— o0) weakly in L'(R%)
(]: 19 29‘"9 N)7 SUPy>1 ”l//nHLw(Rd) < 0, and

lim ¥, (x)=y(x), ae. x=(Xq,Xy,., Xy)ER?
Then

lim [ f1000) f306) -+ ) ()

n— oo YR

= |, At faea) - Sylew) Y(x) dx

For s3>0, introduce a subclass of L}(R3):
LyR*)={f:R*>R| f(o)(1+|v]*)*e L'(R?)}

with the norm
1A =1 =11 pwsys 1= I\fl\uRs)—f 1+ [v]?)¥ dv

Proposition 3. Suppose the kernel B(z, w) satisfy (1.6)—(1.7), and
suppose the kernels B,(z, w) satisfy

0<B,(x, w) < B(z, w), lim B,(z, w)= B(z, w), (z, w) e R¥x S?

n— oo

Let f,, f/ be nonnegative isotropic functions in L}(R?) satisfying
SUP, > | full gy < oo and f,— f (n— oo) weakly in L'(R?). Then for any
bounded measurable function ¢ on R?,
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lim ”J B,(v—v,, o)
n— R3xR3xS?

X oL ns(L+efy+ef,) ¢[ol, [V'], [v)]) doo dv, dv

[l B
x f'f (1 +ef +&f) d(|v], [V'], |V)]) do dv,, dv (2.6)

and

50 [ P
X a1+ e 8 9101, 10, |01 deo di, o
il B(o—v,,0) ffy(1+ & + ) (Jol, '], [v]) dos do, do
R3xR3x 8?2 (2.7)

Proof. By changing variable (v, v, ) — (v, v’,) and noting that |v| is
a function of (|v|, |[v'], [v}]), we see that (2.7) is equivalent to (2.6). Thus,
we need only to prove (2.6). Since sup,; [/, | Lirs) < o0, it is easily seen
that

Ju@)(X+ 0] = f(v)(1 +[v[*)"*  (n— o) weakly in L'(R?)

By Proposition 2 we have

1] B(v—0,,0) f1f 1+ e+ ) (J0l, |01, [04]) doo o, do
R3xR3x 8?2

Jf )1 |U|2)1/2fn( *)(1+|U | )1/21(B,,,¢)(U v )dv* dv
R3><R
é Z m 33 Sf,,(v) Sa(x) [l ) L(B,, ¢)(v, x, y) dx dy dv
j=2 R°xR’xR
where
1

Il(Ba ¢)(U, U*) =(1 + |l)|2)1/2 (1 + |l)* |2)1/2

x| Bo—v,, @) p(I0'], o], [0,.]) doo
S2

IZ(Bﬂ ¢)(Ua X, J’) IE(U, X, J’) ¢(|U|a |X|, |y|) 1{|)c|2+|y|2>|v|2}

13(Ba ¢)(Ua X, y) zé(va X, y) ¢('\/ |X|2+ |y|2_ |U|29 |y|’ |X|) 1{|x|2+|y|2>|v|2}



1348
By assumption and Proposition 2 we have

sup ||1,(B,, ¢)HL°°(R3><R3) <24%* H¢HL®(R3+) <0,

nx=1

lim I,(B,, ¢)(v, v,)=1,(B, ¢)(v,v,) ae. (v,v,)eR*xR?

n-— oo
and
sup [|1;(B,, ¢)HL‘”(R3><R3><R3) <2K ”¢HL°°(R3 )y < 0

nx=1

lim I,(B,. $)(v, x, y)

—L(B.¢)v.x,y) ae (nxp)eRxR*xR%,  j=2,3

Thus applying Lemma 4 we have
lim ([ A0+ 02 000+ [0, 2 LB, ¢)(0, v,) do dv
n— oo J/R3IxR3
(L A P2 f(0, )1+ [oy )2 L(B. (0. ) do do
=M1 B0 S 0 6] do o d
and
3
im Y ([ f0) £00) £0) LB, )0 x, ) dx dy do
n—»ooj=2 R3xR3xR3

=.§ J”R}wamf( v) f(x) f(y) (B, ¢)(v, x, y) dx dy dv

=0 B ) S L) G0l 0 1) doo do do

These prove (2.6). |

Lu
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3. EXISTENCE(l), CONSERVATION OF ENERGY, AND
ENTROPY IDENTITY

Let O(f, f) be the collision integral in Eq. (BBE), i.e
o Nen=[]  Bo—v,.0)
XL (D +ef )1 +efy) — [ (1 +&f") (1 +¢f )] doo dv,

Because of the reduction identity (1.10), we define
O LN =] B—v. @) [0 +ef +ef,) doo do,
R3xS?

O~ (AN =[] | Blo—v.) [ +of tofy) dodo,

If O*(f, f)(v, t) are finite, the decomposition

O(f, Nw, )= Q7 (f, v, 1) = Q7 (f, f)(w, 1)

is meaningful.

Solutions of Eq. (BBE). Given an initial datum 0 < f, e L'(R?).
We say that a function f is a (global) mild solution of Eq. (BBE) on
R3x [0, o0) with f|,_,= fo if f is nonnegative and satisfies the following

(i) fis measurable on R3x [0, o0), and fe L=([0, o0); LY(R?)).
(i)
[[os(f N ydi<m,  veRNZ 1e[0, ),
’ (3.1)
fle 0= foo) + | QU Ny de, 0eRNZ, €10, 00)

where Z is a null set independent of ¢.
Note that if instead of (ii), f satisfies Q%(f, f)e LYR3>x[0, ¢,]),
Vt, >0, and

f(, 1) = folv) + j (f. ) (v, 1) de, te[0, ), veRNZ,, meas(Z,)=0
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then f can be modified on v-null sets such that the modification of f satis-
fies (ii). In fact if we define f(v, 1) := | fo(v) + [50O(f, f)(v, ) dr| then since
/>0 is measurable on R*>x [0, o0), we have f(v, 1) = f(v, 1), t€[0, o),
veR\Z,, O=(f, f)e L\R*x[0, #,]), V¢, >0, and

T, 1) = fo(v) +f 07 7)v, v dr, 1[0, ), veRNZ, meas(Z,)=0

Since both (v, 7) and SO *(7. 7)(v, 7) dr are continuous with respect to ¢
for a.e. ve R?, it follows from Lemma 5 (see below) that f satisfies (ii), and
so fis a mild solution of Eq. (BBE). In this sense, we do not distinguish
between f and its modifications on v-null sets. In this paper, a function fis
a solution of Eq. (BBE) always means f is a mild solution of Eq. (BBE).

The following lemma mentioned above is an easy application of
Fubini’s theorem.

Lemma 5. Let /<R be an interval, and let f;, f, be measurable
functions on RY x I satisfying

(i) 3 null sets Z,cRY such that Voe R¥\Z,, t+> fi(v, t) is con-
tinuous on 7, (i=1, 2).
(ii)  fi(v, t) = fo(v, t) for ae. (v, ) e RV x L.

Then there exists a null set Z < R”, which is independent of 7, such that
filv, )= fo(v, 1),  Viel, YoeRM\Z |

Before proving the existence of isotropic solutions of Eq. (BBE), let us
first recall an important fact: If 0 < f'e L3(R?) is an isotropic function, then
O*(f, /) and therefore Q(f, f) are also isotropic functions because the
kernel B(v—v,, ) depends only on |v—v,| and |[{v—v,, @)|.

Theorem 1. Suppose the kernel B(z,w) satisfies (1.6) and
|s2 B(z, w) dw is bounded on R®. Then for any isotropic initial datum
0< foe LYR?), there exists a unique conservative isotropic solution f of
Eq. (BBE) in C'([0, ), LYR?)) with f|,_o= f,. Moreover if for some
s>2, foe LY(R?), then

G0l < folle® 120 (32)

where a=25*1A* || fo | 11 + 3 - 27%K Ifoll71, A* is given by (1.7).



Modified Boltzmann Equation for Bose-Einstein Particles 1351

Proof. For 6>0, let %, be the collection of isotropic functions
S, 1) = f(|v], t) satisfying (i) f(r, ?) are measurable on [0, c0)x [0, J],
(i) for any 1€ [0, 8], r— f(r, t) are measurable on [0, c0), and (iii)

If1ls:=sup [LSC Oy <2 [ folls

te[0,5]

Let Co=sup. g [s2 B(z, w) dw. We first prove that there exists a >0,
which depends only on the constants C,, ¢K and | f,[/.,, such that the
existence conclusion in the theorem holds on the time interval [0, d]. Let
f, g€ B;5. By Proposition 2 we have

L{a O*(If1, 1A D(w, 6)(1 + [v]?) dv
<HI 3oma a2 B(v—v,, o) |fI (14 [0]*) | fi] (14 |v,]?) do dv,, dv
R°xR’x S

t2 ([l Bw—v. o) /1) 1]

X (14 1012) |/ (14 |0 |?) dov dv, dv
< Colllf G O 2)* + 4K ST )]l )
<[4Co /o llzy + 326K (1 foll )T 1o ll 2y = Col o) Ifo 2y

and

L3 [0 f1 1/ (v, 1) — O(lgl, [gh)(v, O] (1+[v]?) dv

|5l el fl+elf)—1g] gl (T +elgl+e gl
X (1+[v]*+ |v,|?) dw dv,, dv
<2Co |f —glls (11 1ls+ Igls) + 8K [I.f — glls (ILf s+ llglls)?
<[8Co /ol + 128eK([ fo | 1)1 ILf — glls=: Colfo) I/ — 2l s

If we define

J (), 1) = folv) + L: o1, If (v, ) dr, (v, 1) eR*x[0,6]
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then

1) s < 1ol +2Co(fo) 1foll 2t 0

and

17 = 2 (@5 < Col fo) IIf — glls0

Choose 0 =1/(2Cy( f5))(<1/(2Co( f,))). Then ¢ is a contractive mapping
from the complete matric space (%;, |- — - || 5) into itself and therefore ¢
has a unique fixed point € %;, ie., |f—_ Z(f)|s=0. After a modification
for f on v-null sets and using Fubini’s theorem, there is a null set Z;<R?,
which is independent of ¢, such that

Fotanimunai<e,  wer)\z,

and

S0 =folo)+ [ QUSLINe) de, 0eRAZ,, 1e[0.6]

It remains to prove the nonnegativity of the fixed point f. For real number
y denote (y)* =max{y, 0}. Then Yo e R*\Z,,

(= )* = [ L= QU1 1N DT <0 o

<[ U oy 0

and so by |f] 1{,<oy =(—/f)*, Proposition 2 and | f(-, 7)1 <2 I follz, we
have

st i< d [ | Bo-v,.0lf)

X 1yscoy [fl (T te|f'+e|f]) dodv, dv
<[2C [Ifo]l Ly + 16K Hfo“ilz]

<[ IS e re[0,6]
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Thus by Gronwall inequality, |[(—f(-,?)) | =0 for all e [0, 6]. Equiv-
alently, Yz [0, 0], f(v, 1) =0 ae. veR> Let f(v, 1) = | #(f)(v, t)|. Then fis
nonnegative and continuous with respect to te[0,J] for all veR3 and
satisfies | f— #(f)|ls=0. Therefore using Lemma 5 we see that / is a local
solution of Eq. (BBE) on the interval [0, d]. Still denote f by f. Then it is
easily seen that f'is a unique conservative solution of Eq. (BBE) in the class
C'([0,0], Ly(R?)).

By conservation of mass and energy, we have |f(-,d)l,=l/follL}-
Thus with the same >0 and replacing the initial datum f, by f(-, d),
f(-, 20),..., respectively, the solution f can be inductively extended to all
intervals [ d, 201, [ 26, 3 ],..., and the extended function f'is a unique conser-
vative solution of Eq. (BBE) and belongs to the class C([0, o0), L(R?)).

Now we prove (3.2). Suppose foeL)R?) (s>2). Let ¢,(v)=
(1+[v|*)"* An, n>1, where a A b=min{a, b}. By |v'|*+|v,|*>=[v]*+
|v,|* we have

Pu(0) K277 (0) + (0], Pa(v) S2T2TI[G,(0") + Pu(Vy)]
These implies by Proposition 2 that

f;dfngQ”ﬁf)(vafW dv<Cfo Yfullp, 120

where the constant C is independent of n. Thus by Gronwall inequality we
obtain

/Gty @l <[ fodnl exp{Ct}, =0

Letting n— oo we see that feLy ([0, 00); L)(R?)). Therefore using
Povzner’s inequality

(L [0/[2)2 4+ (1 [0, )2 = (14 [0]2)2 = (1 + [, |2)2
<UL+ [02)67 V2 (L [0, )2+ (14 o) (1+ o, ) D2

and inequalities
j Blv—v,,0)do<A*(1+|v—0,])
S2

<2A"‘(1+|v|2)1/2(1—l—lv*|2)1/2 (3.3)
and

(14 [ol?)"2 <227 11+ [V'[2)72 + (1 + [V, ]?)7?]
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(which is used for “Bose parts” only) we have

. 1= 3 . 112\s/2
Al =l +3 [ e [[[ | B0 LA+
+ (L4012 = (1 + [0]?)*2 — (1 + v, *)¥?] dow dv,, dv
+8£) dt ijR3xR3xSZ Bv—v,, o)
LSS + L) = [+ LN+ o) dos do dv
Ut [, B0

) [(1+[o)C7D2 (14 [0, *)"?

+ (14 o) (14 [v,[ )] deo v, dv

t
_ 1L 2\s/2
+6L dr JJJR3><R3><S2 B(v—v,, o) f'f f(1+]v]*)"* dw dv,, dv

L os2—1, Ltd.[ HL@XWXSZ Bv—v,, o) f'f" fq

x [(14 02+ (1 + |v’*|2)s/2)] do dv, dv
< follpr+ (27 1A% 1 follzy +3-2%%K || foll71)

<[ 120
Therefore (3.2) follows from Gronwall inequality. |

Lemma 6. If 0< feL)(R?), then

Lp 1

- (I+ef) log(l+¢f) —f log f| dv< (2 +[loge]) |\f|h;+§(2ﬂ)3/2

Proof. Using the equality (1 + y)log(1+ y)— ylog y=Ilog(l1+ y)+
ylog(1+1/y), y=0 we have

G(v):= ‘1 (14+¢f(v)) log(1 +¢f(v))— f log f(v)

< f(v) + f(v) log(1 + (¢f(v)) 71 + f(v) [log ¢
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If &f(v)<e ", the elementary inequality log(1+ y)<./y (y=0) gives
F(w) log(1 + (¢f(v)) ™) < (1/e) e~V 1P Thus

G0) < (24 llog ) f10)(1 +[of?) 4 e~

This proves the lemma. |

Theorem 2. Suppose the kernel B satisfies (1.6)—(1.7). Let f, =0 be
an isotropic initial datum in L3(R?), and let />0 be an isotropic solution
of Eq. (BBE) with f|,_o= fo, and fe L*([0, c©0); L}(R?)). Then f satisfies
the entropy identity (1.1) and the following non-decrease of energy:

f f(v, 5) |v|2du<j flo, 1) [v]2dv,  VO<s<t<oo (3.4)
R3 R3
In particular, if

| s o< fow) o, 120
R3 R3

then fis a conservative solution.

Proof. The method used in the proof is essentially the same as that
in Lu." To completeness, we present it as follows. First of all it is easily
proved by Proposition 2 that the solution f conserves the mass. To prove
(3.4), consider ¢4v)=(1/5)log(1+3 |v|?). By assumption, the kernel B
satisfies (3.3). This implies that Q*(f, f)(v, t) ¢s(v)e L'(R3>x [0, t;]),
V¢, >0. Thus, using the integral form (3.1) of the Eq. (BBE) and the
equality [v'|* + [v),|* = |v|* + |v,|* respectively we have for 0 <s <7< o0

[ A0 dsordo=] fles)guordo+ [ de [ 0N f)(w7) dile) o

and

N=

., et nw e gy =L ff|  Bw—v.0) (e o)
X[hs'+dss—Ps5— 4] dow dv, dv
M, Bo—v o)+ o +ef)

X [Ysv', v) = s(v,v,)] do dv,, dv

N[=
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where

1 02 |U|2 |U |2
——1Jog |1 *
Ys(v, vy) 5 0g< +1+5(|U|2+|v*|2)>

Thus, with

I f)(v, vy, 1) i= ff, {LZ B(v—v,, o)1 +e&f" +¢fy) dw} Vs(v, vy)

we obtain

f f(v, 1) ¢s(v) dv?f flv,s) ¢s(v) dv—%ft dr ” Is(v,v,,7)dv, dv
R3 R3 s R3xR3 (3.5)

Next, by inequality log(1 + y) < ﬂ (y=0) we have

1 5 |o] vl
l//(U,U )S*
UG T+ o(u)2+ [vg)?)

< o] vy

and so by (3.3)
I )0, 0, 7) <24 (0, )1+ [0]?) S0, 7)1+ o))
Fof(0,7) [o] f(0g.7) o] [ B = v, @)/ )
+ /{0y 7)) doo = Flv, 0, 7)

Because f'e L*([0, c0), L3(R?)), Proposition 2 implies that the function F
belongs to L'(R*xR*x [0, #,]) for all #,>0. Since y5(v,v,) >0 (5 >0%),
it follows from Lebesgue dominated convergence theorem that

t
.
L dr Hksst Iv,v,,7)dv, dv—>0  (6-0%)
Therefore by (3.5), ¢5(v) < |v|% and ¢4(v) = |v|? (§ > 0F), we obtain (3.4):

jf(u,t)|u|2du>f f(o, ) [o]>dv, YO<s<t<oo
R3 R3
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Now we prove the entropy identity (1.1). Define for g(v, 1) =0

1
J(g)(v, 1) == (1 +eg(v, 1)) log(1 +eg(v, 1)) — g(v, 1) log g(v, 1)

For n>1, let @(v)=(1+ |v|®)~%, ¢,(v)=(1/n) ®(v) and

Sulo, )= f(0, 1) + ¢,(v),  fuolv) = fo(v) + ¢,(v)
Since f,, < f;, it is easily shown that |J( f,)(v, t)| < |J(f1)(v, )| + 2f1 (0, t) X
|log ¢], n>=1. And by Lemma 6 we have

LS LIV, )] +2f1(v, 1) [log g| ] dv

1
<(2+3logel) IAC, Oy +2 (27)*2 <0

Since

lim J(f,)(v, 6)=J(f)(v, 1),  V(v,1)eR*x [0, 0)
it follows from dominated convergence theorem that

lim S, (r)= lim f J(f.)(v, 1) dv
n— oo YR3

:j I, 1) do=S,(1),  Vie[0, x) (3.6)

Next, we note that for a null set Z<R3, VoeR\Z, t—J(f,)(v, ) is
absolutely continuous on [0, ¢;] (V#, >0). This implies that Vv e R*\Z,

1+¢f, (v, 7)

) >dr, Vte[0, o)

I 0 =000+ [ QU o) o
(3.7)

Moreover, with C, = |log ¢| + 8(n/¢)'/8, we have

’ <1 +eéf (v, T)
log| —————

Fiv.7) ><C"“+'”'2)m
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Thus by (3.3) and Proposition 2 we have for all 1[0, ),

! 1
[ae [ tor(r o+ (01 flog (<22 ) ao
0 R3 Ja
<4, AU | (-, 0)] 1%+ 86C, K [sup |- 7)1} 1< o0
=0 720

From this integrability and (3.7) we obtain (making use of the change of
variables in the collision integrals)

S,(1)=S,(0)— jot dr | O f)(v.7)log Fy(v. ) dv

t
— 1 _
_an(0)+4f0 dr WRBXRaxsz B(v—v,, o)
X I (v, v, 0, 7) I'(F', F'y, F, F,) dodv, dv

where
P A
1 +¢f, 1 +¢f
I (v, v, 0, )= (1 +e&f" )1 +ef )1 +&f )(1 +ef,)
FF!
Fn(F’,F’*,F,F*)z(F’F’*—FF*)log<F""*>
nt nx
Let
F/F/ —+
' (F.F,,FF,)= (F’F’*—FF*)log<""*>
F,F,,
_ FFu N\
I (F,F,,FF,)=|—(FF,—FF,)log|———
F,F,,
Then

t
1 _ o ’
4L dr HLaXRSXSZ B(v—v,,w) I, (v,v,,0,7) 7 (F,F,,FF,)dodv, dv

= S,(1)—S,(0 j dfmmmsz —v,. @)

x IT,(v, v, 0, 7) [';(F', F,, F, F,)) do dv, dv (3.8)
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Now we prove that, with convergence argument, (3.8) implies the entropy
identity (1.1). Write

¢n

Fn:F“r‘l,bn with lpn:m

Then it can be shown that®

(F'+ ¥, (F +lﬁ’n*)>} "
(F+Y)(Fy+ V)

ST(F'Fy, FF )+ F + Foy,
FFY g+ F U+ W + Vs

(F" + ) (Fy + lﬁ’n*)>] N
(F+,)(Fy + )

SEV + FoVn + By + Foth U, + V0,

I (F.,F,,F, F*):{(F’F’*FF*)log<

r, (r,r,,F, F*)=[ —(F’F’*—FF*)log<

where (-, -) is given by (1.2). Since ¢,, = (1/n) @, we have
I (0, vy, 0, OF Wy + Fotb + By + Fol + W + 00,
1

<E G(U, U*s CO)

where

G(v, vy, @) = (1 +&f (1 +¢f ) "Dy + (1 +&f )1 +&f,) [, @
+ (L&) (1 +ef) [P+ (1 +ef")(1+¢f) [, @
+(1+ef)(1+¢f,) PP, + (1 +¢f")(1+¢f",) PP,

Thus

Hf(U,U*,CO,T)F:(F/,F,*,F,F*)

1
< (v, vy, 0,7) I'(F'Fy, FF,)+-G(v, vy, ®, 7) (3.9)
n

1
I (v, vy, 0,7) ', (F', Fy, F, Fy) <; G(v,v,, o, 1) (3.10)
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Next, since @(v)=(1+ |v|*)~*(<1), Proposition 2 implies that

t
f df”f B(v—v,, ) G(v,v,, w) do dv, dv<oo,  Vie[0, o)
0 R3xR3xS? )

Thus by (3.10)

Jim 5[01 it msznaxsz Bo—v,, )

X (v,v,,0,7) 7 (F,F,,F,F,)dodv,d=0

and therefore by (3.8), (3.6)

fim ird‘cj”R3XR3xszB(v—v*,a))

n— oo 0
XIT (v, vy, 0,7) T (F',F,, F,F,)dodv, dv

= lim [S,(1) = S,(0)]=S,(1) — S,(0), Vte[0, o) (3.12)

On the other hand, it is easily seen that for all (v, v,, w, 7)eR3xR3x

S2x [0, c0),
lim I'}(F',F,, F F,)=I(FF,, FF,)

H(v,v,,0,7) '(F'F, FF,) (3.13)

=T+ ef )1 +ef ), J (1 +ef")(1 +6f)

Since I and I' [ are nonnegative, by Fatou’s lemma, (3.13) and (3.12) we

obtain

thr dr ”valﬁxsZ B(v—v,,w)

X TS+ )1 +ef ), (1 +ef")(1 +¢f7y)) doo dv, dv

t
<liminf 1 _
<timind 3] de [, o o BO=00 0
x I (v,vy,0,7)J(F,F,,F,F,)dodv, dv

=S, (1)—S;(0) <0,  Vie[0, x)
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This integrability together with (3.13), (3.9), (3.11), (3.12) and dominated
convergence theorem give the entropy identity (1.1):

%jot dr ”fwxmxy B(v—v,,®)

X I(f'f(L+ef )1 +ef ), [ (1 +ef )1 +ef")) do dv, dv
= S,(t)—S,0),  Vie[0, x)

The proof of the theorem is completed. ||

4. EXISTENCE(Il), MOMENT PRODUCTION, AND
LOCAL STABILITY

We begin with a lemma which is an easy application of Fubini’s
theorem.

Lemma 7. Let f,=f,(|-])eL'(R?), n=1,2..., ie. f, are isotropic
functions. Then {f,}_, is weakly compact in L'(R?) <> {4nr?f,(r)} 2

n=1
is weakly compact in LI[O,_ o). Moreover f,— f (n— o) weakly in
LYR3) <= f=f(|-]) and 4nr*f,(r) — 4nr*f(r) (n > o) weakly in L'[0, o).

Because of Lemma 7, we now introduce the family # of measurable
radial sets of R3, ie.,

E e % <3 measurable set £ [0, ) such that E= {veR?| |v| e E}
and define, for any 6 >0,
Rs={EecR | meas(E) <o)

Then for nonnegative isotropic functions /' = f{(|-|) € L'(R?), define

V(f0)=sup | f(v)dv

EeRs " E

— sup {fAnrzf(r) dr| <0, o), meas(E’)<(5} (4.1)

E

Lemma 8. Suppose the kernel B satisfies (1.6)—(1.7). Let f be a
nonnegative isotropic function in L)(R?). Then for any ¢ >0,
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sup [ dv[[  Blo—v,,0) ff)fydodo <SK|fIH VL0 (42)

Eea;"E R3x 8?2

sup f de B(v—v,, o) f'f, dodv,

Ee#;"E R3xS?
S[L67K | flI 70 +44% |1 17,0 60" (4.3)

Proof. By Proposition 2 we have for any E € %;
[a[[  B—v,0) () f(0)) f0,) dor do,
E R3xS?
=|f B(v—1v,. ) f(t}) f(') f(0) 1 (|0,]) deo dv,, v
R3xR3x 8?2

:mmmsz B(v—v,, o) f(v},) f(v) f(v)

X 1p(y/1012 + [0, 2= [o]?) doo v, do
<ak [[[ ) £ £ L/ o)
X Lo s sy L= 1y dy dx dv
= 4K me J(w) f(x) {L} ) 1g, (1¥]) dy} dx dv (44)
where

E,.={plp=Ixl, IxI>+p*> 0] and \/|x|* + p* — |v]* € E}

Since

meas( Av,x)zjl I 1s(y/ X2+ p* = [v]?) Liap 425 10 dp

* r

(AT P —
Ve =) v o 2+ o> — |x|?

1p(r)/2dr<./26

o0

J«/ Q@IxI>=vl?) v 0

N
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(where a v b=max{a, b}), there exists an R>0 such that meas(E, N
[0, R]))=meas(E, , N (R, c0)) =imeas(E, ) <d. Thus

[ S0 e (D) dy<2£6), v xeR?

R

Combining this with (4.4) leads to
[ao[[  Blo—v,. @) /) [0 f(0,) dor do <8K | f13 V(1 0)
E R3x8?

This proves (4.2). To prove (4.3), let E€ %5, R= 613, By equality |v'|*+
|0, |? = [v]* + |v,|* we see that |v] >ﬂR implies |v'| > R or |v/,| > R. Thus
if we define fx(v) = f(v) 1>y and ¢*(v) = 15(v) 1< /3 gy > then

S f(0y) 1e(0) < f(0') f(0}) $%(0) + fr(v)) f(V5) + f(") fr(vh)

Hence using Proposition 2, (3.3) and 14(v) =14(|v|), we have
JEdU ﬂmxy B(v—vy, @) f'f do dv,,
<MR3XR3XSZ @) [1f b deo dv., dv
* fURSXRsXSZ B(v— vy, ©)(fx) [y deo dv, dv
B o) [ do dv de
<K | #F oo [[[ | B 0) fefidodo, do
<2K||flZ14n foﬁRrZ 14(r) dr
+44* URngng(U)f(U*)(l + 0] (1 + 0,2 dv,, dv

1
<167K | f1} R? +44* EL S ey de £

< 167K | 71 51+ 44% & 7 /12y = (167K | f1I 2+ 44* [ /17y) 01

This proves (4.3). |
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Lemma 9. Suppose the kernel B satisfies (1.6)—(1.7). Let 0< fy €
LY(R?) be an isotropic initial datum, and let f be a conservative isotropic
solution of Eq. (BBE) with f|,_,= f,. Then for any >0 and any ¢ >0

V(f(+, 1), 0) [ V(fo. 0) + Ci(fo) "t ] exp(10eK | folIZ: 1) (4.5)
where Cy(fo) = 162K || foll 71 +44* [ foll 71

Proof. First of all, it is easily seen that the conditions (1.6)—(1.7) and
Proposition 2 imply that

IfCo ) =S )< Clfo) [t = 1ol 11, 1,€[0, 0) (4.6)

where C(f,) :=4A4% Hfo\linz—i- 8¢K || fol3.1. This implies that for all measur-
able set Ec R3,

d
G rendo=| 0 w0 1pw)di €10, 0)

and the function 7+ V(f(-, t), d) is Lipschitz continuous:

Vs 10),0) = V(S 1), ) S C(fo) lti— 1o, 11, 1,€[0,00)  (4.7)

Now for any E € %, using Proposition 2 and Lemma 8 we have

% L f(v, 1) dugmmxmsz B(v—v,, ®)

X ' (L+ef +ef ) 1p(v) do dv,, dv
< (167K | foll 71 +44* | foll 71) 07

+82K | fol 21 JE flo, 1) dv+ 8K | foll 2 V(S(-, 1), 9)
< Ci(fo) 07 + 10K || follz VS(-, 1), 0)

After integration and taking supy we obtain for all >0

V(f(- 1), 0) S V(fo, ) + Ci(fo) 0"t + 10K | fo |7 L,t (-, 1), 0) de

and the estimate (4.5) follows from Gronwall inequality. ||
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The following lemma is obvious (using spherical coordinate transfor-
mation).

Lemma 10. Let 0< f= f(|-]) e L'(R?), and let k(r) >0 be a non-
decreasing function on [0, o). Then

| fwak(o—o,ydo, =3[ ) kP + 10, dv,,  0eR?
R3 R3

The following lemma gives a sharpened version of the Povzner’s
inequality, which is used in the moment estimates.

Lemma 11 (Lu™). Let s>2, 0<y<min{s/2,2}. Then for all
(0, v, w) ER*xR3x S,

[+ [0l]* = ol” — Jv, |®
<2272 =2)([ol* =7 o, |7+ ol o, °77) = 275(s/2 = D[ ()] [vl*
(4.8)

where x(0)=min{cos 0, 1 —cos 0}, O=arccos(|v—v,|" [{v—v,,®)|).
(For v=v,,, we define 0=0.)

For the angular function b(0) in (1.8)—(1.9), the positive constants

/2
A,=4n f [x(0)]* min{(cos 0)* sin 0, b(0)} sin O d0, s=0 (4.9)
0
and A4 (in (1.9)) will be frequently used in the remainder of this paper.

In the following, for nonnegative measurable function g, we denote by
M (g) the |v]-moments of order s of g, i.c.,

Mg)=] aw)lel"de. 520

Recall that for conservative solutions f with f'|,_,= f, we have

Mo(f(-, 1)) = Mo(fo) = M,, My(f(-, 1)) =My(fo) =M,
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Theorem 3. Suppose the kernel B satisfies (1.6)—(1.7). Let 0 < f, €
LYR?) be an isotropic initial datum with M,>0. Then Eq. (BBE) has
a conservative isotropic solution fe CY[0, o), LY{R?)) with f|,_o= fo.
Furthermore, if the kernal B satisfies (1.8)—(1.9), then the conservative
isotropic solution f'is also unique, and there exists a continuous increasing
function @,(r) on [0, o0) satisfying @,(0) =0, such that for any conserva-
tive isotropic solution g (with go=g|,_o),

lg( ) =fC DIl < Prlgo—follw)) e, 1€[0,00)  (4.10)

where the constant ¢ >0 is independent of g.

Theorem 4. Suppose the kernel B satisfies (1.8)—(1.9). Let 0< f, €
L3(R?) be an isotropic initial datum with M,> 0, and let f be the unique
conservative isotropic solution of Eq. (BBE) with f|,_,= f,. Then

(1) If >0, then for any s> 2

—at

Ms(f(°,t))<M2< bs >(32W, t>0 (4.11)

where

4s

2
a=3BAM = PPME?, b =K PC-A 4 T [A(M,/M)P? +eKM,]
’ (4.12)

(2) If B=0 and fye L} (R?) for some 2 <s<4, then fe L*([0, w0);
L}(R?)) and there exists 0 <t,=1,fy, 4, ¢, K, 5, A,) < oo such that

4s

M(f(-, 1)< <2K_s/3 +124T (4 +8KM0)(M2/MO)S/2> M,, t>1t,(4.13)

s

Proof of Theorem 3 and Theorem 4

Part 1 (Existence and Moment Estimates). We first prove a weak
stability property. Let B,(z, w) be collision kernels satisfying

0<B,(z, w) < B(z, w), lim B,(z, w)=B(z, w), (z, w) e R3x 82

n— oo
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and let f3>0 be isotropic initial data satisfying fg(v) < fo(v) and
lim, , ., fa(v) = fo(v), veR>. Suppose [ are conservative isotropic solu-
tions of Eq. (BBE) corresponding to the kernels B,(z, w) with initial data
S"li—o=f0- By Lemma 9 we have for any 1 >0 and any ¢ >0,

sup V(f™(-, 1), 0) <[ V(fo, 8) + Ci(fo) 6't] exp(10eKM 3 1) (4.14)

n>=1

Since f” conserve the mass and energy, inequality (4.14) and Lemma 7
imply that for any 7>0, {f™(-, 7)} 2, is weakly compact in L'(R?). By a
diagonal process, there exists a subsequence { "} *°_; such that for every
rational number t€[0, o0), (-, t) converges weakly in L'(R?) to some

f(-,t)e L'(R?) (k— o). Also by (4.6) we have

sup [f"(, 1) = /" )l < Cfo) | —12], 11, 1,€[0, 20)

n=1

Thus the weak convergence hold for all 1€ [0, o0). For convenience we
now suppose f™(-,t) converges weakly in LYR?®) to f(-,#)eL'(R?)
(n— o0) for all te[0, oo). Obviously f is a nonnegative isotropic function
and is measurable on R?*x [0, co) and satisfies [ |,_o = fo, f € L*([0, 0);
L}(R?)) and

J S 0yde=] folv)dv

R3’

(4.15)
| S oo o< fo)lol?de,  e[0, 0)
R3 R3

Let Q,= Q. — 0O, be the collision operators corresponding to kernels B,.
Then for any isotropic function ¢ =¢(|-|) e L*(R>) we have, by Proposi-
tion 2,

sup O (S f")(w, 1) |$(v)| dv

n=1,1t>0 *R3
<A* [ fol2y+ 46K L fol132) 1] e

and by Proposition 3

lim [ Q) o) do= | QE e ) dleyde 120
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Therefore using dominated convergence theorem we have for any >0,

[, /w0 by do=tim | 170, 0) go) do

n— oo

=j folv) §(v) dv+ Tim

n— oo

[[ae] 0 1w oo do

= | sl gy do+ [ de [ O (w7 g0 do

= [ seraorane [ | [ ot e de]| g ao

and so f(v, 1) = fo(v)+ [ O(f. f)(v,7)de for te[0, ), veR*\Z, with
meas(Z,) =0. After a modification on wv-null sets, f is a solution of
Eq. (BBE) in the class L*([0, c0); L) n C'[0, o0); L'(R?)). Also, (4.15)
and Theorem 2 imply that fis a conservative solution

Now we choose B,(z, w)=B(z,w) A n and fj = f,. Then Theorem 1
and the weak stability imply the existence of conservatlve solution of
Eq. (BBE). Moreover, if f, € L}(R?) for some s> 2, then by Theorem 1, the
approximate solutions f” satisfy SUD;efo,1,.n>1 /(5 Ol L1 < 00, Vi;>0.
Thus the conservative solution f, which is a weak limit of a subsequence of
{7} oy, satisfies sup,cpo, .7 /(- 0)ll1 < o0, Vi, >0. IffoeL !(R3?), then
applying this result to initial data £,o(v) = fy(v) e~/ "F we obtain con-
servative solutions f, with f,, [,—o = f,o satisfying sup,c o, ;7 /(- D)l L1 < o0
for all ¢, >0 and all s>2, and therefore the function 1+ M (f,(-, t)) is in
C'[0, o) for all s>2, and

d

GMUC =] O S ) ol ddvy dv, 1< [0, o0)
n=1,2,.. Let f be the conservative solution which is a weak limit of a
subsequence of { f,} 2_,. By weak convergence we have

Mf(-, ) <limsup M(f,(-, 1)), Vi>0, VYs>2

n— oo

Also we have lim,,_, (Mo(f,0), M2(f0)) =(My, M,). Thus, to prove the
moment estimate (4.11), we may assume that the initial datum f, and the
solution f have the same properties as those of f,, and f,. Using the
inequality (4.8) with y = f and y =0 respectively (the later is used for “Bose
parts”) we have for any s> 2,
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d 1

MG =3[l B ) 0 e ol = ol

1
xdw dv, dv+§erR3XR3XSZ B(v—v,, o)
X folf"+ LU0+ [0 = [0l — |v]”) do dv,, dv
s/2 _ —
cerff, . mera
X [0l 2 o | P+ 0| # v |*F) do dv, dv
—s—1
2 (s/zfl)mmmsz B(v—v,, ®)
X ffo[K(0)]° |v|* dw dv,, dv
w2 [ B—v ) )
X (|v]* + v, |¥) do dv, dv
(222 [, =2 52— 1) I, +&(22 —2) I
Since s>2>2f, we have |v]* v, |#<|v|?|v,|"+ |v|" [v, | This
gives
el

SOAM(f)(1) M(f(-, 1) S6AME>M PP M (f(-, 1))

R}ﬁ"*lvls_ﬁ 017 (Tl 7 + v, |#) v, do

X

For I, using Proposition 2 we have I; <8KMZIM (f(-, t)). For I,, using
Lemma 10 and the equality min{x, y} = y—(y—x)" we have

I,>34, H

R3xR3

f1ol° fellvo]? + v, [2) 72
x min{ K(|v|* + |v, |*)® =2 1} dv, dv

>14.M, Hksf o]+ A min{K |v]>~#, 1} dv, dv

— 1AM, | [P de— YA M, [ f ol (1=K o) " do
R3 R3

= %ASMO Ms+/3‘(f('a t))_%ASMOK_'B/G_'B)MS(]‘(" t))
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Further, by Hélder inequality, we have
[M (GNP KM, (S 1) M
and so
12 = %ASMOMZ_ﬁ/(S_Z)[Ms(f( ] l))] T+As=2) %AsMOK_ﬁ/(s_ﬁ)Ms(f( s t))

Therefore

d
S MU ) <SCMUfC0) = GEMfl T2, 120
which implies

C, (s—=2)/B
< )
Co(1 —exp{ —(B/(s—2)) Ct})

t>0

Ms(f('a t))

Cy=(27—=2) 6AME> M y=#2 4 (297 —2) 8eKM ]
+2757(s2—1) A, M K HG=P

g2 ppi-p2 52

>(s—2)34AM5> M) =5 ¢

C
C,=2"""s/2— 1) ALM M;#¢=?  and C—lgbsMg/”‘z)
2

This proves (4.11).
Now we prove the estimate (4.13) (=0, 2<s<4). In Lemma 11,
choose y =s/2(<2). Then using the same derivation above we have

%Ms(f(-, 0)<20272=2)J, =272 1) [, +e2(272 = 2) J,

where
— _ g s/2 s/2
Jy JHR&R&SZB(U Uyr @) Sy [0]7% [0, |? deo dv,, dv
SA[M(f(-, 1)]> < AMP MG ">
= _ ! s/2 s/2
Js mkwsxszB(u 0y @) [ S 012 0, [ doo dio,, dlo

S2KMo[ Mo(f)(1) 1> <2KMo M5 MG~
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and (using Lemma 10 and x A y=y—(y—x)* again)
J2=HJR3 B o) ff, 1ol (O] deo do do
>14, HRS S [l fo, 0 min{K o], 1} dv, do

Mo [ fo.0) ol do—34,Mo [ f(w,0) [0l (1=K o) " do
R3 R3
> A MM (f(, 1) — 34, K~ M3

Therefore
d

%Ms(f('a N)<C=CaM(f(-,1)), 120

This implies
G

Ms(f'(~,l))<e’c4’Ms(fb)+F, t=0
4
where
C3=2(252—2) AMS? M2~ 4 4(2% - 2)
x eKMoM3>M2=2 427552 —1) A, K~ M?2
C,=2"""s2—1)A M,
and
C, 1 s 2% .
<o (2K™ P+ =— (A +eKMy)(My/My)"? ) My :=Cs
c, 2 A,
Thus for
log(M C
{. = max {0’ og( Z(?fO)/ 5)}(<OO)
4

we have M(f(-, 1)) <2Cs, t>t,. This proves (4.13).

Part 2 (Local Stability). 1In the case =0, the local stability (4.10)
is obvious: from the proof of Theorem 1 and Gronwall inequality we have
lg(-, ) =, Ol <Illgo—fo HL%e”’, t >0, where the constant ¢ can be so
chosen that it depends only on | fo[ i, 4, and ¢K since f and g are both
conservative solutions.
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Now suppose > 0. In this case, because of Proposition 2, the proof
of (4.10) is essentially the same as that for the original Boltzmann equation
(Lu™). To completeness, we present it as follows. It suffices to prove that
the conservative isotropic solution f obtained in Part 1 (i.e., f satisfies the
moment estimate (4.11)) satisfies (4.10) for all conservative isotropic solu-
tions g. In fact, this implies the uniqueness of conservative isotropic solu-
tions. Let

Y.(r)= sup f(v, )1 + |v]?) dv, r>0; Y,(0)=0
o<r<r Ylol>1/4/r

Then using a generalized dominated convergence theorem [ 15, Theorem 3.4 ]
it is easily shown that the non-decreasing function ¥(-) is continuous on
[0, 00) (see also ref. 14). Now we prove that the function @,(r) in (4.10)
can be taken as

D (r)=Clr+/r+¥(r)], r=0

where C is a positive constant depending only on f,, f, & K, and the
angular function b(-). In the following the same letters C, ¢ will denote
different such constants. Let

Udt)=1lg(-, ) = f(, )1, 120, 0<s<2
We prove that for any conservative isotropic solution g of Eq. (BBE),
Uy(1) S CLUL(0) +/Us(0) + P,(Uy(0)] e, 120  (4.16)
If U,(0)>1, then the conservation of the mass and energy implies that
Us(t) <l[golla+ 1 folli < (142 [ foll) Ux0), 220 (4.17)

where go=g|,_o. Therefore, in the following, we assume that U,(0) <1
(which implies [|go s <1+ [Ifollzy and Ux(2) <1+2 | fol ) for all £>0).
To prove (4.16), we need three inequalities: For any 0 <r <1,

U2(t)<U2(r)+Cr<l+i>Ul(r)dr—f—Cthz(r)dr, (>r (418)

r r

Us(1) < Us(0) +\2

U1 < UL(0) + cft Uyt dr, 130 (4.20)

0

Ut)+2%P,(r),  0<i<r (4.19)
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(4.20) is obvious because of 0 < <1 and Proposition 2. Inequality (4.19)
follows from the identity |g— f|=g—f+2(f—g)*, the conservation of
mass and energy, and the definition of ¥,(-). Also, for (4.18), we have

Us() =g Ml = I/ )+ 2 LA ) —g( )] Mz, t=r
(4.21)

Then applying the integral form of Eq. (BBE), we have for a.e. veR3,

fo. )= g(e.0]* =LA —g(en]* + [ a || Bwo—v,.0)

+e f: dt szxsz Bv—v,,w) loq

{[ff (f+[e)—gg(g+g,)]
[ + 1) —gg.(g + g4)]} dodv,  (422)

Next, by the nonnegativity of f and g, it is easily shown that

(=88 — s — 28} Lirg
S — 880" — (e —88) " + /18— fil (4.23)

Since (ff, — gg,)" < ff,, and the solution f satisfies the moment estimate
(4.11) (choose s =2+ f) which implies that for ¢ > r(>0)

J: dfﬂfkgmsz — Uy, @) ffo(1 4 [0]?) dew dv v,
4 jt

r

a ][ (0. 7) f(ogs )1+ [0]?) |0 — v, |# do db,
R3IxR3x 8?2
A[ 1Ay, 1 D)y e

<Alfol [ 20Mot MyMy (£ )] dr < o0
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it follows from [0'|*+ |v},|*=v|*+ |v, | that

t
j drj” B(o—vy, o) f'f— &gt (1+|v|*) dow dv dv,,
r R3xR3x 8?2

=r e (|| Bo—1v,, ) (ffs— g8,)* (14 [0]?) dew dv dv, < o

r R3xR3xS?
Therefore by (4.22), (4.23) and Proposition 2,
ILAC, ) —g(-, 017 Nz

<ILfCr) = g1 gt | e [[] Bv—v,, )

r R3IxR3xS?

< f 18— ful (L [0 doo dodo, +C [ Unfr) de
<L/, r) =g )17l

A [ 1D, I8 D) = f Dl e+ C [ Unlo) de
<UL/ =811

t 1 t
+Cj <1+r> Ul(r)dr+CJ U,(7) dr, t=r

r

This estimate together with (4.21) gives (4.18).
In (4.18), choose r=1. Then, since U,(-)< U,(-), it follows from
Gronwall inequality that

Uy(t) < Uy(1) et=D, =1 (4.24)

Now let r>0 satisfy U,(0)<r<1, and let U*(r) =supy<,<, U,(t). Then
using (4.18), (4.20) and Fubini’s theorem we have

t 1 t
Uy(1) < Uz(r)+cj ;Ul(r)dz+Cf Uy(7) d
tl T t
< Uy(r) + CUL(0) |1ogr|+cj ;f Uz(a)dadwrcj Uy(7) de
r 0 r

< U*(r)+ Cr|logr| + Cf U,(o)(|loga| + 1) do, te[r 1]
0
(4.25)
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Since the last inequality in (4.25) also holds for U,(¢) for te[0,r], it
follows from Gronwall inequality that

Uy t)<CLU*(r)+r|logr]],  te[0,1] (4.26)

For U*(r), we have, by (4.19) and (4.20),

U*(r)<U2(0)+4< (0)+cj Uiz )dr>+2¥’f(r)

N

SCLr+/r+¥(r)] (4.27)
Therefore, combining (4.26), (4.27), (4.24) with (4.17) we obtain
Uy(t) SCLr+/r+ ¥ (r)e, 120, r>0, r=Uy0)

This gives the estimate (4.16) by taking r= U,(0) for U,(0)>0 and by
letting r > 0* for U,(0)=0, respectively. The proofs of Theorem 3 and
Theorem 4 are completed. ||

5. LONG-TIME BEHAVIOR(I): LOW TEMPERATURE

This section deals with the velocity concentration at the very low tem-
perature condition 7'< T,. Some results of this section are also used in the
next section. We first give the

Proof of Proposition 1. For any 0 <a<1/e, b>0, we have

_ 2
eae bl

_1 1 - n —nb|v| 3
Qa’b(v)_;l_wefblvl Eg ea)" e ve R°\{0}

and so

_1 - n —nb |v|?
L@ .Qa,b(v)dv—g Y (ea) f e dv

R3
1 13/2 9]
:<> ﬂ3/2 Z (8(1)””73/2
b n=1
f as(0) V] dv— Z (ea)” f v e 1P gy
R3 3

L/INP3 L, &
:<b> S Y (ea) n =

n=1
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Suppose (a, b) is a solution of the moment equation system (1.3). Then

Mz > 2/3 2% 37[ anl (8a)n n75/2
>¢
(M) 2 (I®  (ea)"n=3%)>3

n=1

=R(ca) (5.1)

where

LD n=2m
R(t) =¢” =l -, 0<r<1
(Zn— 3/2[ )5/3

We need to prove that the function R(7) satisfies

dR (¢
( )<0, te(0,1); and lim R(¢)= o0 (5.2)
dt t—>0t

The second property is obvious. Let 7€ (0, 1). By computing we see that

dR(1) 2 IVRE
i {Eo(””) / ’}

Since
=> ) (k+1)32(n+1—k)=3
and

[§ wen ][ £ e

=0 =0

+(n+1—-k)?k+1)"12]
it suffices to to show that

(k+1)73/2 (n+1_k)73/2
<3(k+1)"P(n+1—=k)" 2+ (n+1—k)=>*(k+1)~12]



Modified Boltzmann Equation for Bose-Einstein Particles 1377

k=0,1,.., n 1e.,

AEATERTTET N R
k+1 }’l+1—k 6 k+1 n+l—k > =Vu, 1,..,n

But these inequalities hold obvoiusly. Therefore dR(¢)/dt<0 for all
te(0,1). Since eae (0, 1], it follows from (5.1) that M,, M, satisfy the
condition (1.4), i.e.,

M, 3 5P
g7 > R = a7

(M)~
Conversely, if M,, M, satisfy (1.4), then by (5.2) we see that there exists
a unique 0 <a < 1/¢ such that M,/(M,)>"> = R(ae). Therefore with

b= {(8M0)_1 73?2 i (ea)"n_3/2}2/3(>0)

n=1
(a, b) is a unique solution of the moment equation system (1.5). ||

In order to show the velocity concentration, we need the following
Lemma 12 which is a consequence of Chacon’s biting lemma (Brooks and
Chacon®). One version we used of the Chacon’s biting lemma is the
following form of Ball and Murat® (see also Zhang®):

Let (Q, #, i) be a finite positive measure space, and let { f,} 2, be a
bounded sequence in L'(Q, du) ie., sup, -, o [/,| du < oo. Then there exist
a function f€ L'(£, du) and a subsequence { fnj} 72, such that

fnj — f(j— o) biting-weakly in LY(Q, du)

That is, there exists a non-increasing sequence of sets E,e.%, with
lim, _, , w(E;) =0, such that f,,/,Af (j— o) weakly in LY Q\E,, du) for
every fixed k. ||

Lemma 12. Let Q cR”Y be a measurable set with meas()= co.
Let {f,}>_, be a bounded sequence in L'(£2) satisfying

sup J | fu(x)| dx —0 as R—o

n=1 "2\By

where Bz ={xeR" | |x| <R}. Then there exist a function f,, € L'(2) and
a subsequence { fnj ;=1 such that

Jo, = foo (j— o0) biting-weakly in L'(2)
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Proof. Consider a positive measure u defined on the Lebesgue
measurable sets:

du=(1+|x)"Vdx, ie., ﬂ(E):j (1+|x]2)~Ndx
E

It is easily seen that x is finite (ie., u(2)<oo) and for any Zc<Q,
u(Z)=0<meas(Z)=0 which implies that L*(Q\E, du)=L*(Q\E) for
all measurable sets Ec Q. Let g,(x)= f,(x)(1+ |x|?)". Then l&nll e, au

= | fullzy@)- By Chacon’s biting lemma, there exist a function ge

LYQ,du), a subsequence { g,,]} ;=1 and a non-increasing sequence of sets
E,, with lim, ,  u(E;) =0, such that g, — & weakly in LY(Q\E,, du) as
j— oo for every fixed I Since L®(Q\E,, d,u) L*(Q\E)), this is equivalent
to f,, —~f weakly in LY(Q\E) as j— oo for every fixed I, where
Sfoo(x) = g(x)(1 + |x|*) Y. Choose a subsequence {E,i};";l such that u(E",l_)
<174N, i=1,2,., and let Ek— (E,mB) Then E, o E,>E;> ---,
and meas(E, NB)<(1+i%H)Y ,u(E, r\B ) <2Vi72V 5o that meas(Ek)
PAD Y i=2V' 0 (k— o0). Now given any k>1 and any ¢ € L*(Q\E,).
By deﬁmng ¢=0on E,, $ € L*(Q). For any integer R >k, we have E, >
(E, N Bg), and so there is a set 4,  such that Q\Ek—[(.Q\E,)
(Ez \BR)] N A, g Let ¢y g(X) = d(x) IAY (x). Then

[ petdx—]  f(x) ) dx
O\E, Q\E;

J

<\ [y Aol B = [ )
O\, J

OQ\E,,

1l (300 [ U e[ 100 )

Thus first letting j— oo and then letting R— oo we obtain lim;_,
fows, Job dx = §o\g, foo @ dx. This proves the lemma. ||

Theorem 5. Suppose the kernel B(z, w) satisfies (1.6)—(1.7) and
B(z,w)>0 for all 0<|<{z,w)|<|z|. Let 0< fye L)(R?) be an isotropic
initial datum satisfying M, >0, and let f be a conservative isotropic solu-
tion of Eq. (BBE) with f'|,_o=/f,. Then for any sequence {¢,}3° <
[0, o) satisfying lim,, _, ., #,, = o0, there exist a subsequence {tnj} ;/=pand an
equilibrium solution 2, , (0 <a<1/e, b>0) such that

4nr3f(r, th) —4nr*Q, ,(r) (j— o0) biting-weakly in L'[0, c0)
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(where Q, ,(|-]) =9, ;) and Q, , must satisfy

1 ) T 3/5
A Ls Q. ,(v) dv<min {1, <Tb> } (5.3)
As a consequence, if { f(-, t,,j)} 2, is weakly convergent in L'(R?), then its
weak limit must be an equilibrium solution Q, , with 0 <a<1/e, >0, and
therefore M, and M, must satisfy the temperature condition 7> T,.

Proof. By conservation of mass and energy, we have [¢° dnr*f(r, t,)
(1+7r*) dr=My+ M,(<oo). Thus by Lemma 12, there exist a subsequence
{t,,j}]f’o:l and a function 47nr’f,(r)e L'[0, o) such that 4arf(r, ty) =
4nrf, (r) (j— oo) biting-weakly in L'[0, c0). We now prove that the func-
tion .. (v) :=f..(|v|) is an equilibrium solution of Eq. (BBE). For notation
convenience, we may suppose that 4zr2f(r, t,) — 4nrf,(r) (n — o) biting-
weakly in L'[0, o0), ie., there exist a non-increasing sequence of measur-
able sets £, = [0, co) with lim, , ,, meas(E,) =0, such that 4ar?f(r, t,) —
4nr®f. (r) (j— o0) weakly in L'([0, oo)\E,) for every fixed k. This implies
first that that

| ooy do<Mo, | fu) ol do< M, (5:4)

And we may assume that 0 < f..(v) < co for all ve R3. Then we consider

D(g) ZJHR&R&SZ B(v—v,, o)

xY(g'g (1+eg+eg,)—gg,.(1+eg +egl))dwdv, dv

where

2

y
r(y)=—"—, yeR
1+1yl

To prove that f, is an equilibrium solution, it suffices to prove that
D(f,)=0. In fact, if we define F=f_/(1+¢f,), then, since the kernel
B(v—v,,®»)>0 ae. on R?xR*xS% D(f,)=0 implies that F'F', = FF,
a.e. on R*xR3xS% Thus by a well-known result of Arkeryd [1, p.26], if
|/ | 2> 0 then there exist constants a >0, b>0 such that F(v)=ae 2"
a.e. veR’, and therefore f,,(v) =Q, ,(v) a.e. ve R’ Also the nonnegativity
of . implies that a < 1/e. If || f, || ;1 =0, we choose a =0.

Now we prove D(f,)=0. Since fe L®([0, c0), L}R?)), it follows
from Lemma 6 and Theorem 2 that the entropy 7+ S,() is continuous,
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bounded and monotonically non-decreasing on [0, co0). Thus for any n> 1,
there exists J,, > 0 such that

1
S5, =+ Sty +0,) —Sy(t,)

»=00. Then from the entropy identity

and lim,_, , J,=0 since lim,,_, ¢
i,e[t, t,+9,] such that with f,(v):=

(1.1), for any n>1, there exists 7,

f(U, En)»
0<e(f,) <4[S/(1,+9,) —S/(1,)1/9,<49,

where

:UJR&R&SZ B(U_U*’ )

xI(g'g (1 +eg)(1+egy), gg.(1 +eg')(1 +egly)) dwdv, dv

This gives lim,,_, ., e(f,,) =0. On the other hand, by (4.6) we have

[, 160) = f(0 1) do < CUo) [Ty =1, S CUfo) 3,0 (no0)

This implies that 4ar?f,(r)—4nr?*f,(r) biting-weakly in L[0, ) as
n— oo. Next let

Di([ol, (v ls [0'] 105 D) = 1o, cong (10]) Lo, cong (o4 1)

X 110, cong( [v']) 1o, N, [U% )

) =|l] Bo-v.0)

xI(g'gy(1+eg)(l+eg,), gg.(1+eg')(1+eg))
X @ do dv,, dv

D)=l Bro—v.0)

X Y(g'gy(1+eg+eg,)—gg,(l +eg' +egl))
x @, do dv,, dv

and

Fa0)=1,0) Lo opg(I0]), f(0) = foo() Lo, opg(I0])
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Then we have

elfD=elf)<elfn),  Dulf5)=Dif.)
Here we have used the convention that oo -0=0. Let Z=(\_, £,
Doo(lol, vyl '] 105l
= 1[0,00)\2(|”|) 1[0,oo)\z‘(|U* ) I[O,oo)\Z(|U,|) 1[0,00)\2”(|U/*|)

Since E, > E,>E;> ---, it follows that &, converge non-decreasingly to
@, on R®*xR*xS? and so by monotone convergence theorem, Fubini’s
theorem and meas(Z) =0 we have

D(f.)= lim Dy(f.,)= lim Dy(f%,)
Thus we need only to prove that D,(f* )=0 for all k. It should be noted
that the biting-weak convergence and Lemma 7 implies that

fr*—fk (n— o) weakly in L'(R?)

for every ﬁxed k. Next observe that ¥ is convex on R (d?Y(y)/dy?*=
2(1+1]y*)7?) and

dr(y) y(2+ [y]) .
dy  (1+|y)?"

=I(»), [HLiy)I<l, yeR

Thus for bounded functions

Pellvl, [o, s 1L 105D = Ya((f5) (F5)% (1 +ef 5 +e( %))
—fe(f)s (L+e(fE) +e(f5)5)

we have, by convexity of T,

YU (F)s (Lef it e(f 7)) = () (L+e(f3) +e(f)5)
ZY((f5) (fe)e (L+ef5 +e(f5),)
—fe(f)s (L+e(fL) +e(f5)5)
ol [og L 101 10 DU ()% (L+ef 5+ a0/ 7))
=S (L+e(f3) +e(f7)5)
=[S () (L+efS +a(f5)5)
—fe(f)s (L+e(f) +e(f5))]}
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and 50 by de([0']. 10,1, [o], [0, 1) = —di(lol, [0, ], [']. [04]) we have

DUIZ DU +2 (][ B, 0)
XA () Atef i +e(f)s)
— () (f)s (L+ef G +e(f5)5)} dxPydo dv, dv
By Proposition 3, the integral tends to zero as n — co. Thus we obtain

Dy(f*,) <lim inf Dy(f*) (5.5)

Next, in the following elementary inequality
(a—b)*<(av b)I'(a,b), a,be[0, o)
choose
a=(f3) (f)s (L+ef D +e(f7))
b=fuf1)s (L+e(f3)) (1 +e(f7)y)
and let
max =max{(f5), (f2)% [ (f1)s}
Then for any R>1,
Y(a—b)<R*(1+eR)*I'(a,b)+|(f%) (f5), 1 +ef*+e(f5),)
— o) L +e(f%) +e( )] 1 max> gy
where we have used the reduction identity (1.10). By definition of D,(-),
this gives
DTSRI +eRP e f)+2 [[] - Bo—v, o)) (7,
X (L4ef 4 e(f7)5) | max> ry deo dv dv (5.6)
Further, by 1 < R we have, for instance,
S (s (Lef 4 e(f2)5) Limax= 75> &)
S(L+2e)(f3) (S5 [u Listsry
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Thus, by Proposition 2 and conservation of mass and energy, the second
term in the right hand side of (5.6)

<4fll | Bo—vL o)) (0,

X (1+ef%+e(f%)) max=(rty = gy do dv, dv

+4 HLBXR&SZ B(v—v,, o)(f%) (f%),

x(1+efX+e(f%),) 1 max = s%> ry doo dv, dv

<8A* | foll iy 15 sty
(84326) KM3 151 ke gy = A o R) < AL(R)

where 4,(R)=sup,- 4, ,(R). Therefore
Di(f%) SRX(1+eR)*e(f,) + A(R)

Since it is easily seen that f%(v)(1+|v|*)"* converge weakly to
SE ()14 [v]*)* in LY(R?), the set { fX(v)(1+ |v]*)'?} 22, is weakly com-
pact in L'(R?). Thus 4,(R)— 0 as R — oo. Therefore, first letting n — oo,
then letting R— oo, we obtain lim,_ , D,(f%)=0. This implies
Di(f*)=0 for all k by (5.5). Therefore, f,, =Q,, (0<a<1/e, b>0).

Now let A=(1/M,) g3 2, 5(v) dv. Then (5.4) shows that A<1 and

Qv do=iMo, | @, y(0) o] dv< M,
R

R3
If 2>0, then by Proposition 1 we have

M2 >i C(5/2) 82/3
(AMo) ™ 2m [(3/2)]°

Since

T _ M, 2a[{3/2)1" 1

T, (Mg 3 ((572) &F

(5.7)

this gives A>3 < T/T, and (5.3) holds. The remainder of the theorem is
obvious. ||
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Theorem 6. Suppose the kernel B(z, w) satisfies (1.6)—(1.7) and
B(z, w) >0 for all 0 < |{z, )| <|z|. Let f;, > 0 be an isotropic initial datum
in L3(R?) satisfying M,>0 such that M,, M, satisfy the very low tem-
perature condition: T<T,. Let f be a conservative isotropic solution of
Eq. (BBE) with f'|,_o=f,. Then for any 0 <e < 1/2, there exist an R >0,
a t,>0 and a family {S,},., of measurable radial sets S, = B with

lim meas(S,)=0

t— oo

such that

Mif f(u,t)dv>(1—e){l—(?)ys}, Viz1,

0°"sS b

Proof. Given 0 <e < 1/2. We first prove that Vo >0, 3¢(d) > 0 such
that (recall (4.1))

/

Suppose, to the contrary, that there exists a d,> 0 such that V>0, 3z, >7
such that V(f(-,t,),00) <(l—€/3)[1—(T/T,)**]. Then there is a
sequence {7,}_, < [0, co) satisfying lim,, _, ., ¢, = co such that

n=1

T

3/5
Tb> }MO, n=1,2,3,. (39)

V(- 1), 0) <(1 —e/3>[1_<

On the other hand, by Theorem 5, there exist a subsequence {l,,j} 721, an
equilibrium solution £, , and a non-increasing sequence of measurable
sets E, [0, c0), with lim, ,  meas(E,)=0, such that 4zr’f(r,t,)—
4nr?Q, 4(r) (j— o) weakly in L'([0, c0)\E,) for every fixed k, and j.Qa,b
satisfies the inequality (5.3). Since f conserves the mass, it follows from
(5.3) that

IA dnr*f(r, 1) drzMOfJ Anr?f(r, 1) dr

£ [0, o)\E

~ Mo~ | 42 Q, o(r) dr

[0, o)\Ey

T \3/5
>{l—<> }MO as j— oo
T,
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Choose a large k> 1 such that meas(E,) <d,, and then choose a j>>1
such that [z dnr*f(r, t,,) dr>(1—€/4)[1 —(T/T,)**] M,. Then we get a
contradiction to (5. 9) V(o 1), 00) > >(1—€/4)[1—(T/T,)*] M,. This
proves (5.8).

n (5.8), for every ke N (the set of all positive integers), choose
6=2"% Then for any t>17(27%), there exists a measurable set
E, ,<=[0, o) with meas(E, ,) <27, such that

| awfu 0y dr>(1-€p2) { - <TT>3/5} M,

£, b
Now let 7o=max{1, 7(27")},

n(t) =max{keN | max{k, t(27%)} <} for t>1,

_/ 2M,
N e[l —(T/T,)**]1 M,
and define
S,={veR?||v|eE,, N[0, R)} for t>1,

Then S, < By and, since f conserves the energy, we have for all 1> 1,

Anr®f(r, t) dr> (1 —€/2) { 1 (77:>3/5} MO?@

b

j f(v, 1) dvzf

S; En(t), (N[0, R)

a2

Finally, since lim, , ., n(t) = oo, it follows that for all > ¢,
meas(S,) <4nR> meas(E,,, ,) <4nR27"" >0 (t—> o0)

This proves the theorem. |

Remark. There leaves an important question concerning the
behavior of the bounded concentration sets S,: In Theorem 6, does the
family {S,}t>,0 can be so constructed that it is also monotonically non-
increasing, i.e., S, oS, Vi, <t' <t<w?
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6. LONG-TIME BEHAVIOR(Il): HIGH TEMPERATURE

In this section we will use the moment estimates (4.11) and (4.13) to
give very high temperature conditions for solutions converging weakly to
equilibrium as time tends to infinity. Because we hope to get quantitative
results on the temperature conditions, the proof involves many detailed
estimates using the positive constants A4, 4, defined in (1.9) and (4.9)
respectively.

Theorem 7. Suppose the kernel B satisfies (1.8)—(1.9). Let f, >0 be
an isotropic initial datum in L(R?) satisfying M,>0, and let f be the
unique conservative isotropic solution of Eq. (BBE) with f|,_,= f,.

(1) (p>0). Suppose M,, M, satisfy a very high temperature con-
dition:

T

— > A (KYC—PeM,) (6.1)
b
where
214 4 \ 22— BV 20 2/B
%(y)=8< > <1+y> y7h, y>0 (62)
A2+ﬁ’ AO
Then

S, 1)—=Q, ,(v) weakly in L'(R?) as 1 —> o0 (6.3)

where the coefficients «, b are the unique solution of the moment equation
system (1.5) satisfying 0 <a<1/e, b>0.

(i) (B=0). Suppose foe LX(R?) for some 2<s<4, and M,, M,
satisfy

Ao
KeMy<—

A 2/(s—2) T A 2/s
20 < . > and —=8 <24SS2A> (KEMO))_2/3

iy 7,7
(6.4)

Then the weak convergence (6.3) still holds.

Proof. First of all we note that since <1 and 4,< 4 for s >0, each
of the conditions (6.2) and (6.4) implies 7/T,> 1. Thus by Proposition 1,
the moment equation system (1.5) has a unique solution (a, b) satisfying
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0<a<l1/e, b>0. Next, by Theorem 4, in both cases (i) and (ii), we have
for (some) s>2, sup,~ [ f(+, ?)] L} w3y < 0. Since f conserves the mass and
energy, this boundness and Theorem 5 imply that if there exists a time-
sequence {t, }n . satisfying lim, _ ,¢,=o0 such that the sequence
{f(-,t,)} 2, is weakly convergent in L'(R?), then the weak limit of
{f(-,1,)} £_, must be the unique equilibrium solution @, , determined by
the moment equation system (1.5). Thus if the set { (-, 7)},5, is weakly
compact in L'(R?), it must converge weakly in L'(R?) to Q, , as > .
Therefore in the following we need only to prove the weak compactness of
{f(~, 1)} =0 Since f is an isotropic function in v and conserves the mass
and energy, by Lemma 7 and the definition of V(f(-, t), J), it needs only
to prove that sup, o V(f(+,),0)>0asd—->0".

We first give an estimate used for both cases (i) and (ii). For any ¢ >0
and any E€ %, let ¢(v) =1.(v) and V(1) =g f(v, t) dv. By Lemma 8 and
Proposition 2 we have with the constant C; = C,(fy) >0

dt VE ”L{sxnsxsz — vy O SS(L+ef +4f)
— (L +ef +ef )} ¢ do dv, dv

<WR3XR3XSZ B(v—v,,®) ['f¢ dodv, dv
+SJJJR3xR3XSZB( — 04, @) 'y fb deo dv,, d
+8WRSXR3XSZ — 040, ) [f s Sy do v, dv
Il Bl ) fif, deo v, d

< CL0V 4 26KM3 [ fl0,1) 9(o) o+ 8eKMVA(-. 1), 0)

— | flv, t) ¢(v) {” B(v—v*,w)f(v*,l)dwdv*}dv
R3 R3x 82

<03 + 10eKM2 V(f(-, 1), 0)

_[Ef(u, ) {HRS Blo—v,,®) f(v,. 1) de dv }d
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For the negative term, using Lemma 10 we have
H B(v—v,, ) f(v,,t)dodv,
R3xS?

:J flu,, 1) {J min{ K(cos 0)?
R3 s?
xsin @ [v—uv, |3 b(0) [v—v,|?} dw} dv,

> Ao [ f(o,, min{K [o—v, % [o—v,]%} do,

R3

> 14, [ flog, min{K o, 2 |0, do,

Rr3

Thus, with
1) =] flog min{Ko, [ v, 1%} do,
we obtain

1
%VE(t)<C151/3+108KM§ V(- 0.0) =5 AoI 1) Vilt), 120 (65)

(i) (B>0). Since min{K v, |3 v, %} = v, |F— v |#(1—
Ko P75 = v, |f— K P/3=P we have

Iy(t) = My(f(-, 1) = K~PC=PM,

By (6.5), this gives for all =0

% V()< C 6 + @ AK~PC=BA + 105KM§> V(f(-, 1), 9)
1
-3 AoMg(f(-, 1)) V(1) (6.6)

On the other hand, applying the conservation of energy and Holder
inequality we have

My=My(f(-, ) S[My f(f(-, 1)1 P2 M4(f(-, 1)) 172
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In the moment estimates (4.11) (for f>0), choose s=2+ f and choose
to >0 such that e**=2. Then for t >, we have M, 4(f(-, 1)) < M,2b, 4,
where b, , 4 is given by (4.12) with s =2+ . This implies

My(f(-, 1)) 2 (2by )"~ PP My, 121,

Therefore, by (6.6), we have

@V <Co 4 C( 0.0~ CVslr), 121,

where

Cy=3A40K PP My+10eKM3, Cy=34,- (2D, ) =P M,
(6.7)

Now we prove that the condition
C;>C, (6.8)

implies the L'-weak compactness of {f(-,7)},5o. Suppose (6.8) holds.
Then

d
S LeOVE() ISV CP+ G 1,0)], 121

This implies that for any ¢ >¢, and any 4> 0,

eCS(t+h) V(f( s Z+h)a 5)

<SS +f ST+ Cy V(7). 0)] e

Since the function ¢+ V(f(-, t), d) is Lipschitz continuous on [0, c0) (see
(4.7)), it follows that

% [eS V(S (-, 1),0) 1<eS[C16"3+ CV(f(+, 1), 6)] ae. t>1,

and therefore

d

SV 0,0)+(Co = G V(1,9 <o e 131,
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Thus

V(f('at)a 5)<V(f(.3t0)36)+cicv251/3 1210 (69)

This together with Lemma 9 implies the weak compactness of { (-, 1)} ,5,.
Now we prove that the high temperature condition (6.1) implies (6.8).
Note that according to (6.7), the condition (6.8) is equivalent to

M 20K
2>(2b2+ﬂ)(2ﬂ>//”<1<ﬂ/<3ﬂ>+ Ag M0> (6.10)
0

0

Recalling (4.12) we have

2-=p)2 42+p) +1,
(2b2+ﬁ)(2ﬂ>/ﬁ:<M2> {<2Kﬁ/(3ﬁ)+2++d<]w°>
M, Az ip
292+ +1 47 BB
X (My/M,) =2 + }

Aoy

2=p)2 13
<<MZ> [(2[(—/3/(3—13)_}_261{%))
MO 2+p

2134 1@—BYB
< (Ma/Mo) "7+ }

2+

Thus, the following condition implies (6.10):

13 13 4 122 B)/B?
MZ>[<2K—/3/<3—/9)+28KMO> (My/My) =2 + 2 A}
M, 248 2+8
20eK 2B
x <1<—ﬂ/<3—ﬂ>+ ¢ M0> 6.11)
0
Let T/T, = p. Then by equality (5.7) for T/T, we have
M, _ 2 ih oo (ZELEGDTPNT L
M, cp(eMy) with ¢ .—< 3 52) > g (6.12)
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If we write y = K¥®~$eM, and

13 213 4 2(2—p)/p?

2
Hap. 3)=| (20792 4+ = 3P ) p) 42 4
2+ 8
20\
i —253
<(1+20)

then, by (6.12), the condition (6.11) is equivalent to

Azep

cp>J(ep, y) (6.13)

Now suppose that M, M, satisfy the high temperature condition (6.1).
Then since ¢ > 1/8, we have, by (6.1)—(6.2),

214 4\ 22— B 20 VR
> 14— -
» <A ) ( T4, > v

248

14 2—-p)/B 2/p
= 274 y—ﬂ/3+§y1—lf/3
A2+/3 A4,

2y =R 4 (2134, ;) ' PP <A2+ﬁ>(2—ﬁ)/ﬁ 213 4 22— BYR
YR +(20/40) ' PP\ 214

20 \2
1 = —2/3
X< T4, > Y

This gives

J(ep, y) < {
As g

Since 0 <f<1 and 4,<A4,< A for s >0, we have

2P+ (2 Ay ) ¥ <A2+ﬁ>(””< 214

y7P+(20/40) y' 7\ 214 Azip

Thus we obtain (6.13):

214 4\ 22— BV 20 \A52
J(cp, y)<< > <1+y> y P <ep
A2+ﬂ Ao

and therefore the set { f(-, )}, is weakly compact in L'(R?).

(i1)) (B =0). In this case, the proof of the weak compactness is slightly
different because for f=0 the integral (see (6.5)) I4(t) <M,, so that in
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order to use 3A4,inf,. ., Lo(?) to suppress 10eKM 2, the first condition in

(6.4) will be used. Choose p=s/(s—2), ¢=s/2. Then by conservation of
energy and Holder inequality we have

1/p
M2<< S0ss 1) min{K |v,|*, 1} dv*>
R

|U*|2q 1/q
% <sz S0y, 1) [min{K |v, | 1} ]9” dv*>

ie.,

M= < [0s " w )
S/(s— <
2 =X O(t) <J‘R3f(v*’l) [min{K|U*|3’1}](372)/2 U*>

For the integral we have (since 2 <s<4)

|0y °
[min{K |v, | 1} ]¢~2"

J, 7we) dv,
o, °
(Ko, |97

Vyer 1) dv,

Lqu*Pgl

[ S ol d,
Ko, ?>1
SK™PMo+M(f(-, 1))
Further, using the moment estimate (4.13) we have for some #,>0

K=PMy+M,(f(-, 1)

24s
<<3K_S/3+A(A+K3Mo)(M2/M0)s/2> M,, 121

s

Thus, with
4s

2 —2/(s—2)
C,:= <3K—x/3 +o (At K.sMO)(Mz/MO)Sﬂ) (M) =22

s
we obtain

IO(t)Z(MZ)S/(S_Z) Csa tzls
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and so (6.5) for f=0 becomes

d
7 Vi(t) < C6"3 +10eKM2V(f(-, 1), 6)

1
—§A0(Mz)s/“_2) CVelt), =t

5

As is shown in the case (i), to prove the weak compactness of { f(-, )} =,
it needs only to prove that the condition (6.4) implies the condition

LAy(My)¥e=2 C, > 10eKM? (6.14)

which gives an estimate of the form (6.9). The condition (6.14) is equivalent
to the condition

M, <2OK3MO

(s—2)/s ;" 24s » 2/s
K™ +— (A4 KeMy)(M,/M,)* 1
S () (s S Kb 1)) (615)

s

Write T/T,=p and M,/M,=(sM,)** cp as above, and let y=KeM,.
Then the condition (6.15) is equivalent to the condition

20 (s—2)/s 24s 2/s
1><y> <3ys/3(cp)s/2_|_(A+y)> (616)
Ao A,

Now suppose M, and M, satisfy the condition (6.4), i.c.,

AO A 2s—2 243—2A
<9 s —s/3 —5/2 <
YS%0 (24S+1A> and -y ep) RS
Then
24s 24s+1A

3 —s/3 —5/2 Z (A4

v~ (cp) +As( +y)< A
and so

20)/ (s—2)/s 24s 2/s
=7 3 —s/3( . —s/2 = A
CE) T (e e )

20y (s—2)/s 24s+1A 2/s
o) )=
A, A

s

Thus the condition (6.16) is satisfied and therefore the set {f(-, 7)},5 is
weakly compact in L!'(R3). This completes the proof. |
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